skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Griffith, Emily_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The scale ofα-element yields is difficult to predict from theory because of uncertainties in massive star evolution, supernova physics, and black hole formation, and it is difficult to constrain empirically because the impact of higher yields can be compensated by greater metal loss in galactic winds. We use a recent measurement of the mean iron yield of core collapse supernovae (CCSN) by Rodriguez et al., y ¯ Fe cc = 0.058 ± 0.007 M , to infer the scale ofα-element yields by assuming that the plateau of [α/Fe] abundance ratios observed in low-metallicity stars represents the yield ratio of CCSN. For a plateau at [α/Fe]cc= 0.45, we find that the population-averaged yields of O and Mg are about equal to the solar abundance of these elements, log y O cc / Z O , = log y Mg cc / Z Mg , = 0.01 ± 0.1 , where y X cc is the mass of element X produced by massive stars per unit mass of star formation. The inferred O and Fe yields agree with predictions of the Sukhbold et al. CCSN models assuming their Z9.6+N20 neutrino-driven engine, a scenario in which many progenitors withM< 40Mimplode to black holes rather than exploding. The yields are lower than assumed in many models of the galaxy mass–metallicity relation, reducing the level of outflows needed to match observed abundances. Our one-zone chemical evolution models with η = M ̇ out / M ̇ * 0.6 evolve to solar metallicity at late times. By further requiring that models reach [α/Fe] ≈ 0 at late times, we infer a Hubble-time integrated Type Ia supernova rate of 1.1 × 10 3 M 1 , compatible with estimates from supernova surveys. 
    more » « less
  2. Abstract The first generations of stars left their chemical fingerprints on metal-poor stars in the Milky Way and its surrounding dwarf galaxies. While instantaneous and homogeneous enrichment implies that groups of conatal stars should have the same element abundances, small amplitudes of abundance scatter are seen at fixed [Fe/H]. Measurements of intrinsic abundance scatter have been made with small high-resolution spectroscopic data sets where measurement uncertainty is small compared to this scatter. In this work, we present a method to use mid-resolution survey data, which have larger errors, to make this measurement. Using APOGEE Data Release 17, we calculate the intrinsic scatter of Al, O, Mg, Si, Ti, Ni, and Mn relative to Fe for 333 metal-poor stars across six classical dwarf galaxies around the Milky Way, and 1604 stars across 19 globular clusters (GCs). We calibrate the reported abundance errors in bins of signal-to-noise ratio and [Fe/H] using a high-fidelity halo data set. Applying these calibrated errors to the APOGEE data, we find small amplitudes of average intrinsic abundance scatter in dwarf galaxies ranging from 0.03 to 0.09 dex, with a median value of 0.047 dex. For the GCs, we find intrinsic scatters ranging from 0.01 to 0.11 dex, with particularly high scatter for Al and O. Our measurements of intrinsic abundance scatter place important upper bounds, which are limited by our calibration, on the intrinsic scatter in these systems, as well as constraints on their underlying star formation history and mixing that we can look to simulations to interpret. 
    more » « less